CHAPITRE VIII

MANIPULATIONS NUMERIQUES DE BASES DE DONNEES

TABLE DES MATIERES

1. Bases de données (aspects théoriques)
1.1. Table de relations

1.1.1. Les clés

1.1.2. Les tables d’association

1.2. Algebre relationnelle

1.2.1. Projection et Restriction

1.2.2. Union, Différence, Intersection

1.2.3. Produit cartésien

1.2.4. Jointure

1.2.5. Agrégation

2. Le langage SQL (enquéte sur les Panama Papers)
2.1. Le contexte

2.2. La base de données

2.3. Objectif du TP

2.4. Un peu de vocabulaire

2.5. Déroulement du TP

2.6. Conclusion : les commandes a retenir
3. Sujets d’annales en lien avec ce chapitre.

ECG 2 Maths appliquées, http://louismerlin.fr.

CO O O Ut WwW NN

http://louismerlin.fr

CHAPITRE VIII 2

L’administration, les banques, les assurances, les secteurs de la finance utilisent des bases de données,
systemes d’informations qui stockent dans des fichiers les données nombreuses qui leur sont nécessaires.
Une base de données relationnelle permet d’organiser, de stocker, de mettre a jour et d’interroger des
données structurées volumineuses utilisées simultanément par différents programmes ou différents
utilisateurs. Un logiciel, le systeme de gestion de bases de données (SGBD), est utilisé pour la ges-
tion (lecture, écriture, cohérence, actualisation...) des fichiers dans lesquels sont stockées les données.
L’acceés aux données d’une base de données relationnelle s’effectue en utilisant un langage informa-
tique qui permet de sélectionner des données spécifiées par des formules de logique, appelées requétes
d’interrogation et de mise a jour. L’objectif est de présenter une description applicative des bases de
données en langage de requétes SQL (Structured Query Language).

Ce cours est séparée en deux parties. Dans un premier temps (plus théorique), nous allons analyser
la structure sous laquelle apparaissent les fichiers volumineux de données (fichier .csv). Puis nous
explorerons les possibilités du langage SQL dans un TP.

1. BASES DE DONNEES (ASPECTS THEORIQUES)

1.1. Table de relations. L’objet de base que nous manipulerons tout au long de ce cours est appelé
relation.

Une relation est un tableau de données (penser a un fichier Excel). Chaque ligne représente un
objet et tous les objets sont de méme nature.
Une base de donnée (parfois abrégée en BDD) est un ensemble de relations.

Remarque 1.1.1. Méme si le tableur Excel est la bonne image & garder en téte, nous verrons plus loin
que, dans la pratique, les données sont stockées dans un fichier texte .csv, plus léger et moins riche
graphiquement que le tableur.

Ezemple 1.1.2. Construisons la table de relation des étudiants de cette prépa, en indiquant comme
caractéristiques les dates de naissance, la ville de provenance et le choix d’options ESH/HGG et Maths
Appli/Maths Appro.

] Les étudiants de Dumas |

] identifiant H date de naissance \ ville de provenance \ ESH ou HGG \ Appli ou Appro ‘

1 04/03/2003 Paris ESH Appli
2 22/05/2004 Versailles HGG Appli
3 22/10/2003 Versailles HGG Appro
4 27/07/2001 Paris ESH Appli
5 10/01/2002 Saint-Cloud ESH Appli
6 10/01,/2002 Rambouillet ESH Appro

Remarque 1.1.3. Dans une relation, 'ordre des lignes n’a pas d’importance.

Il est tres fréquent de mélanger les termes définis par le modele relationnel et les termes propres au
vocabulaire des bases de données relationnelles. Ainsi

Une relation est aussi appelée une table.

Les termes ligne, n-uplet, enregistrement ou vecteur sont tous synonymes.
e De méme les colonnes sont souvent appelées des attributs.

Le schéma est I’ensemble des attributs d’une relation.

Le domaine désigne I’ensemble des valeurs que peuvent prendre un attribut.

CHAPITRE VIII 3

1.1.1. Les clés. Reprenons ’exemple précédent des étudiants de notre prépa. Il est tout a fait possible
que deux étudiants aient exactement la méme date de naissance et prennent les mémes options. Dans
une table, il est tres important d’identifier de maniere unique chaque ligne. C’est pour résoudre ce
probleme d’identification qu’interviennent les clés.

Une clé est un groupe minimum d’attributs caractérisant chaque n-uplet de maniere unique.

Ezemple 1.1.4. Dans notre exemple précédent, lattribut identifiant est une clé ("I’étudiant qui a
pour identifiant 2” permet de désigner un étudiant sans aucune ambiguité). En revanche, la date de
naissance n’est pas une clé car il y a deux étudiants qui sont nés le 10/01/2002. Le groupe d’attributs
{date de naissance, Maths Appli/Maths appro} est une clé.

Ezercice 1.1.5. On considere la relation voiture décrite par la table ci-dessous.

immatriculation | pays immatriculation | couleur | nombre places | propriétaire | prop num secu | prop num voiture
2883-AA France bleue 5 Luc 1134212 1
1923-BD France verte 7 Lucia 2021726 1
PLT-28-190 Portugal bleue 7 Gael 1012612 1
2383-ZN France noire 9 Léila 2125312 2
1209-NQ France noire 5 Léila 2125312 1
2634-0S France bleue 5 Gael 1162732 1

Dans cette table, immatriculation désigne le numéro d’immatriculation de la voiture, pays imma-
triculation le pays dans lequel la voiture est immatriculé, couleur la couleur de la voiture, nombre
places le nombre de places de la voiture, propriétaire est le pronom du propriétaire, prop num
secu le numéro de sécurité sociale du propriétaire (en France, chaque personne possede un unique
numéro de sécurité sociale), prop num voiture rend compte du fait que si un propriétaire possede
plusieurs voitures, il peut les numéroter.

1. Le groupe d’attributs {immatriculation} est-il une clé pour notre relation ?

2. Le groupe d’attributs {immatriculation, pays immatriculation} est-il une clé pour notre
relation 7

3. Le groupe d’attributs {immatriculation, pays immatriculation, couleur} est-il une clé
pour notre relation ?

4. Le groupe d’attributs {prop num secu} est-il une clé pour notre relation ?
5. Le groupe d’attributs {prop num secu, prop num voiture} est-il une clé pour notre relation ?
Ainsi, comme c’est le cas dans notre exemple précédent, plusieurs attributs peuvent étre des clés.

Or, dans une base de données, nous voulons nous mettre d’accord une fois pour toute sur 'une d’entre
elles.

Dans une relation, les groupes d’attributs qui constituent des clés sont appelés des clés candidates.
Dans la pratique, il sera indispensable d’en choisir une et nous ’appellerons la clé primaire.
En anglais, clé primaire se dit Primary Key et s’abrege en PK.

Remarque 1.1.6. Dans le logiciel de gestion de base de données que nous utiliserons, nous verrons
que lors de la création d’une table de données dans un fichier .csv, il est indispensable de désigner au
préalable une clé primaire.

Méthode : Comment choisir la clé primaire ?
Le choix d’une clé primaire pourrait trés bien étre arbitraire (parmi les clés candidates). Cepen-
dant, on peut prendre en compte certains criteres. En effet, une clé primaire est généralement
choisie de facon a ce qu’elle soit simple, c’est-a-dire qu’elle ne contienne le moins d’attributs
possibles.

CHAPITRE VIII 4

De plus, on préfere généralement les attributs ”basiques” (par exemple des entiers ou des
| chaines de caracteres courtes).

Parfois aucune des clés candidates ne contient un nombre raisonnable d’attributs et ne semble
"simple”. On peut alors fabriquer une clé simple :

Une clé artificielle est un attribut que 'on ajoute a la relation. Cet attribut n’a pas de réelle
signification dans le domaine que l'on modélise et sa seule fonction est d’identifier de maniere
unique les n-uplets de la relation.

Ezemple 1.1.7. Reprenons encore une fois la liste des étudiants en prépa ECG de Saint-Cloud. Le
premier attribut identifiant est une clé artificielle.

Remarque 1.1.8. Un bon programmateur prend en fait I’habitude d’utiliser comme clés primaires des
clés artificielles. Il y a (au moins) deux raisons a ga.

1. Dans ’exemple précédent des immatriculations de voitures, nous nous demandions si les deux
attributs {prop num secu, prop num voiture} constituaient une clé candidate. La réponse
était oui & condition de ne supposer qu’on ne prenait en compte que des propriétaires de
nationalité francaise. Cependant, si notre application évolue, et que nous souhaitons généraliser
& des personnes d’autres nationalités, notre clé n’est plus bonne. Une clé artificielle est donc
une bonne solution a [’évolutivité de notre base de données.

2. Pour des questions de performance (en termes de temps de calcul), les clés non artificielles ne
sont souvent pas optimisées lorsqu’il est demandé au SGBDD de retrouver une ligne dans une
table.

Une base de données est en fait bien souvent constituée de plusieurs tables; et ces tables ne sont
pas indépendantes.

Dans notre exemple fil rouge de la base de données des étudiants de notre prépa, nous pouvons
nous intéresser a la ville de provenance des étudiants et renseigner dans une relation séparée certaines
caractéristiques des villes qui y décrivent ’ambiance de travail. Méme si cette seconde table est d’un
intérét indépendant, ces deux relations sont liées car chaque étudiant provient d’une des villes décrites
dans le seconde table.

’ Etudier dans les villes autour de Saint-Cloud ‘

| ville (PK) | temps de trajet | facilité de travail | difficulté de travail |
Saint-Cloud 0 Proche Pas de bibliotheques
Paris 45 Dynamique/facile de | Bruyant
trouver de l'aide
Versailles 30 Joli cadre de vie Problemes de train
fréquents
Rambouillet 60 Facile de faire du sport | Temps de transport

Ainsi, si on veut connaitre le temps de trajet quotidien d’un étudiant, on doit déja connaitre sa
ville de provenance, puis regarder dans la table des villes, quel est le temps de trajet pour venir a
Saint-Cloud.

Retrouver une ligne dans une table, c’est justement le réle des clés!

Un attribut d’une table qui est une clé pour une autre table de la base de données s’appelle une
clé étrangere.
En anglais, clé étrangere se dit Foreign Key et s’abrege en FK.

CHAPITRE VIII 5

Ezemple 1.1.9. Dans notre liste d’étudiant, 'attribut ville de provenance n’est pas une clé (plusieurs
étudiants peuvent venir de la méme ville). Cependant, cet attribut fait quand méme référence a la
clé primaire d’une autre table de la base de données, celle qui décrit les conditions de travail dans les
villes voisines de Saint-Cloud. La ville de provenance est donc une clé étrangere dans la relation des
étudiants.

Méthode : Comment choisir les attributs a regrouper dans une relation ?
C’est en général une mauvaise idée de regrouper tous les attributs dans une méme table. En
effet,

e Sile temps de trajet pour aller de Saint-Cloud & une ville voisine change (bientot la ligne
151!), il faudrait modifier 'information dans toutes les lignes correspondantes de la table
(pour tous les étudiants qui habitent dans cette ville). On risque d’en oublier et de perdre
la cohérence de la base de données. On cherche a éviter la redondance des données.

e Si on souhaite ajouter les caractéristiques d’une nouvelle ville proche de Saint-Cloud, mais
qu’aucun étudiant n’habite dans cette ville, on ne peut pas.

Pour éviter la redondance, on peut suivre la regle suivante :

Si un attribut A dépend uniquement d’un groupe d’attributs G et que G est minimal
(c’est-a-dire que si on enléve un attribut a G, alors A ne dépend plus uniquement que des
attributs restants), alors il est possible de créer une nouvelle table qui ne contient que les
attributs A et G. G sera d’ailleurs une clé candidate pour la nouvelle table et tout autre

attribut B qui ne dépend que de G peut étre déplacé aussi dans la nouvelle relation.

Ezemple 1.1.10. Dans notre exemple récurrent, nous avons appliqué ce principe dans la table des villes
voisines : le temps de trajet, les facilités et difficultés a travailler ne dépendent que de la ville et nous
les avions placé dans la nouvelle table.

Le processus qui consiste a créer de nouvelles tables pour éviter la redondance s’appelle la
normalisation.

Dans la suite de ce cours, nous nous intéresserons uniquement a la manipulation des données, et
nous n’entrerons pas dans les détails de la création de données et de leur stockage. Les stratégies de
normalisation sont donc hors programme en ECG.

1.1.2. Les tables d’association. C’est maintenant la fin de I'année dans notre prépa et nous voulons
ajouter a notre base de données les informations sur les différentes admissibilités de nos étudiants
dans les différentes écoles. Nous pouvons donc ajouter une colonne dans notre table d’étudiants avec
I’attribut admissible a qui est une clé étrangere vers la table écoles.

Et si un étudiant est admissible dans 2 écoles, comment fait on ?

On pourrait mettre deux colonnes avec les attributs admissible a 1 et admissible a 2 qui seraient
toutes les deux des clés étrangeres vers la table écoles. Mais ce raisonnement n’est pas tres bon : on
ne peut pas savoir a ’avance dans combien d’écoles un étudiant va étre admissible.

La stratégie inverse ne fonctionne pas non plus. On pourrait envisager de mettre dans la table
écoles un attribut étudiant admissible qui serait une clé étrangere vers la table étudiants. Mais
cela voudrait dire qu’une école ne peut sélectionner qu’un seul étudiant admissible !

Ce probleme motive la définition suivante :

Une table d’association est une relation qui contient comme attributs au moins deux clés étrangeres
vers d’autres relations de la base de données.

CHAPITRE VIII 6

Ezemple 1.1.11. Construisons donc la relation des écoles de commerce, puis la table d’association des
étudiants et des écoles dans lesquelles ils sont admissibles.

‘ Ecoles de commerce ‘
| Identifiant (PK) | Nom de I’école | Rang ‘

1 HEC 1
2 ESSEC 2
3 ESCP 3
4 EDHEC 4
5 EMLyon 4 ex aequo

On aurait presque pu considérer que le rang de 1’école de commerce est une clé candidate mais cela
nous aurait empéché de considérer que des écoles peuvent étre a égalité.

Nous pouvons maintenant renseigner efficacement les différentes admissibilités des étudiants de la
prépa, sans nous limiter, ni en nombre d’écoles par étudiant, ni en nombre d’étudiants admissibles par
école.

] Admissibilités |
Etudiant ‘ Ecole ‘
1 1
1 2
1 4
2 4
2 5

Remarque 1.1.12. Rien ne nous empéche d’ajouter des attributs dans notre table d’association (par
exemple la date de passage pour les oraux dans la situation précédente) : tous les attributs de la
table d’association ne sont donc pas nécessairement des clés étrangeres pour une relation de la base
de données.

Cela pose d’ailleurs la question du choix de la clé primaire dans une table d’association... mais c’est
une autre histoire.

1.2. Algebre relationnelle. Dans la partie précédente, nous avons vu comment représenter des
données. Nous passons maintenant a la partie manipulation. Comme convenu au début de ce cours,
nous décrivons tout d’abord de maniére abstraite les différentes opérations que I'on peut appliquer a
une base de données, puis nous verrons comment cela se concrétise dans la section suivante.

1.2.1. Projection et Restriction.

La projection consiste a sélectionner les attributs que ’on souhaite et d’éliminer les autres.

Ezemple 1.2.1. Si 'on s’intéresse uniquement aux dates de naissance des étudiants de la prépa, on
peut faire une projection pour ne conserver que ’attribut date de naissance et on obtient alors la
table suivante.

identifiant | Date de naissance
04/03/2003
22/05/2004
22/10/2003
27/07/2001
10/01/2002
10/01/2002

| U | WD —

CHAPITRE VIII 7

Nous voudrions maintenant faire la méme opération mais sur les lignes, c’est-a-dire ne conserver
que certaines des lignes de notre relation. C’est légerement plus compliqué car les colonnes de notre
table portent un nom mais pas les lignes. Les lignes d’une base de données sont amenées a varier car
les informations contenues dans la table varient au cours du temps.

Comme les lignes a garder ou a enlever sont dynamiques, il nous faut donc une condition qui nous
permette de restreindre les lignes.

Une restriction dans une table de données est une condition binaire (de type vrai ou faux) qui
porte sur un ou plusieurs des attributs de la relation.

Ezemple 1.2.2. 1. Le résultat de la restriction de la table des étudiants sous la condition date de
naissance > 11/01/2002 produit la table suivante.

‘ Les étudiants de Dumas

|

] identifiant H date de naissance \ Ville de provenance \ ESH ou HGG \ Appli ou Appro ‘

1 04,/03/2003 Paris ESH Appli
2 22/05/2004 Versailles HGG Appli
3 22/10/2003 Versailles HGG Appro
2. La projection de la table des étudiants avec la condition ESH ou HGG = 'ESH’ produit la table
suivante.

‘ Les étudiants de Dumas

|

] identifiant H date de naissance \ Ville de provenance \ ESH ou HGG \ Appli ou Appro ‘

1 04/03/2003 Paris ESH Appli
4 27/07/2001 Paris ESH Appli
5 10/01/2002 Saint-Cloud ESH Apph
6 10/01,/2002 Rambouillet ESH Appro

1.2.2. Union, Différence, Intersection.

L’union de deux relations R; et Ro de méme schéma est une nouvelle relation, également de
méme schéma, qui contient ’ensemble des lignes de R; et Ra

Remarque 1.2.3. Attention, dans la pratique avec le langage SQL, 'union de deux tables qui contiennent
une ligne en commun produira une table avec la méme ligne répétée.
Mais ce n’est pas tres grave, il existe une commande pour éliminer les doublons d’une table.

Ezemple 1.2.4. Sion a dans deux relations différentes des renseignements sur les étudiants de la prépa,
par exemple

] identifiant H date de naissance | Ville de provenance | ESH ou HGG \ Appli ou Appro ‘

1 04/03/2003 Paris ESH Appli
2 22/05/2004 Versailles HGG Appli
3 22/10/2003 Versailles HGG Appro
4 27/07/2001 Paris ESH Appli
et
] identifiant H date de naissance | Ville de provenance | ESH ou HGG \ Appli ou Appro ‘
16 07/12/2000 Saint-Cloud HGG Appro
25 01/02/2003 Paris ESH Appli
32 11/09/2001 Saint-Cloud ESH Appro

CHAPITRE VIII 8

alors la réunion des deux relations produit la table

] identifiant H date de naissance \ Ville de provenance \ ESH ou HGG \ Appli ou Appro ‘

1 04/03/2003 Paris ESH Appli
2 22/05/2004 Versailles HGG Appli
3 22/10/2003 Versailles HGG Appro
1 2707 /2001 Paris ESH Appli
16 07/12/2000 Saint-Cloud HGG Appro
25 01/02/2003 Rambouillet ESH Appli
32 11/09/2001 Saint-Cloud ESH Appro

La différence est 'opération inverse de la réunion.

La différence de deux relations de méme schéma R; et Rs donne une relation R3 de méme schéma
qui contient toutes les lignes de R; qui ne sont pas dans Ra.

Remarque 1.2.5. Attention a l'ordre, I'opération de différence n’est pas commutative.

Enfin 'intersection correspond a la méme opération qu’en théorie des ensembles.

L’intersection de deux relations de méme schéma R; et Ry donne une relation R3 de méme
schéma qui contient toutes les lignes qui sont a la fois dans R; et dans Ra.

1.2.3. Produit cartésien. Au conseil de classe, chaque professeur doit donner une appréciation sur
chaque étudiant de la prépa. Pour cela, nous disposons d’une relation qui contient les informations sur
les professeurs de la classe (pour simplifier, nous n’entrerons pas dans le détail du choix des options).

identifiant prof | Nom du professeur
profl Martinez
prof2 Danino
prof3 Lievre
profd Perrot
profb Roumaneix
prof6 Merlin
et (une projection et restriction du) tableau des étudiants
identifiant étudiant
1
2
3

Pour pouvoir indiquer toutes les appréciations dans une relation, nous devons former le produit
cartésien des deux tables des enseignants et des étudiants.

Le produit cartésien de deux relations R; et Ry est une table qui contient toutes les combinaisons
possibles des lignes de R; et des lignes de Rp et qui contient les colonnes de R; ainsi que les
colonnes de Rs.

CHAPITRE VIII 9

Dans notre exemple, le produit cartésien des relations professeurs et étudiants renvoie la table
suivante

identifiant prof | Nom du professeur | identifiant étudiant
profl Martinez 1
profl Martinez 2
profl Martinez 3
prof2 Danino 1
prof2 Danino 2
prof2 Danino 3
prof3 Lievre 1
prof3 Lievre 2
prof3 Lievre 3
prof4 Perrot 1
prof4 Perrot 2
profd Perrot 3
profb Roumaneix 1
profb Roumaneix 2
prof5 Roumaneix 3
prof6 Merlin 1
prof6 Merlin 2
prof6 Merlin 3

a laquelle il est ensuite facile d’ajouter un attribut appréciation.

1.2.4. Jointure. La jointure est le concept fondamental de ’algebre relationnelle. Jusqu’a présent, nous
avons vu que les clés étrangeres servent a lier des relations. Mais nous ne savons pas encore comment
exploiter ces liaisons. C’est justement le but de 'opération de jointure.

Si nous voulons connaitre le temps de trajet pour venir a Saint-Cloud d’un étudiant de la prépa,
nous devons regarder d’abord dans la table des étudiants sa ville de provenance, puis aller chercher
le temps de trajet dans la table des villes voisines. La jointure sert a coller les deux tables pour faire
apparaitre I'information sur une seule table. Plus précisément,

On considere deux relations R; et Ro et on suppose que dans la relation Ry, le groupe d’attributs
G est une clé externe pour la relation Ro. La jointure de Ry et Ro selon G est la table qui contient
le méme nombre de lignes que R; et les attributs de R; et de Ry. Chaque ligne est construite
en commencant par la ligne de R, puis en ajoutant a sa suite la ligne de Ro caractérisée par la
valeur de sa clé dans G.

Le groupe d’attributs G s’appelle la condition de jointure.

Remarque 1.2.6. 1l s’agit d’une jointure interne, la seule au programme de ECG. Sans rentrer dans
les détails, mentionnons seulement qu’il existe d’autres types de jointure, qui peuvent éventuellement
différer de celle-ci lorsqu’un attribut d’une ligne n’est pas renseigné (ce qui n’est pas interdit, ni dans
la théorie, ni dans le langage SQL).

Ezemple 1.2.7. La jointure de la table des étudiants

CHAPITRE VIII 10
identifiant date de nais- | ville de prove- | ESH ou HGG Appli ou Appro
(PK) sance nance (FK)

1 04/03/2003 Paris ESH Appli
2 22/05/2004 Versailles HGG Appli
3 22/10/2003 Versailles HGG Appro
4 27/07/2001 Paris ESH Appli
5 10/01,/2002 Saint-Cloud ESH Appli
6 10/01/2002 Rambouillet ESH Appro
avec la table des villes (projetée pour ne garder que le temps de trajet)
| ville (PK) | temps de trajet ‘
Saint-Cloud 0
Paris 45
Versailles 30
Rambouillet 60

selon la condition ville de provenance = ville donne la table suivante

etudiant. etudiant. etudiant. etudiant. | etudiant. | ville. nom de | ville.

identifiant || date de | ville de | ESH ou | Appli ou | ville temps de
naissance provenance HGG Appro trajet

1 04/03,/2003 Paris ESH Appli Paris 45

2 22/05/2004 Versailles HGG Appli Versailles 30

3 22/10/2003 Versailles HGG Appro Versailles 30

4 27/07/2001 Paris ESH Appli Paris 45

5 10/01/2002 Saint-Cloud ESH Appli Saint-Cloud 0

6 10/01/2002 Rambouillet ESH Appro Rambouillet 60

Ezercice 1.2.8. Montrer que la jointure est ’enchainement d’un produit cartésien et d’une restriction.

1.2.5. Agrégation. L’agrégation (qui n’est en fait pas une opération de l’algebre relationnelle) est
utilisée lorsqu’on veut faire un calcul qui porte sur plusieurs ligne d’une table. Elle sert par exemple
a répondre a la question

Quelle est le temps de trajet moyen des étudiants pour chaque option ?

Il s’agit donc de calculer une valeur pour chaque choix d’options ESH-Appli, ESH-Appro, HGG-
Appli, HGG-Appro.

L’agrégation est donc une opération en deux étapes : une étape de partitionnement et une étape de
calcul ou on applique une fonction a chacun des blocs de la partition.

On considere une table et un groupe d’attributs. Un agrégat est une partition des lignes d’une
table selon les différentes valeurs que peuvent prendre les attributs.
Dans cette situation, on dit que les attributs sont des attributs de partitionnement.

Une fois les agrégats formés, on leur applique une fonction d’agrégation.

Une fonction d’agrégation est une fonction définie sur les éléments de la partition (elle rend une
unique valeur pour chaque bloc de la partition).

Les exemples classiques de fonctions d’agrégation que nous manipulerons dans la pratique sont
les fonctions de décompte (compter le nombre d’éléments d’un bloc), des fonctions de moyenne, de
minimum, de maximum.

CHAPITRE VIII 11

Exercice type concours.
Un fabricant d’ordinateur souhaite publier des données statistiques sur la durée de vie des appa-
reils fabriqués a partir de I’an 2000. Dans une base de données, on dispose d’une table ordinateur
contenant des informations sur tous les ordinateurs produits par le fabricant. Cette table possede
les attributs (ou colonnes) suivants.

e id (de type INTEGER) : le numéro d’identification de 'ordinateur.
e année_ fabrication (de type INTEGER) : 'année de fabrication de 'ordinateur.
e adresse_ip (de type INTEGER) : ’adresse IP de l'ordinateur.

e année_ panne (de type INTEGER) : Pannée ou 'ordinateur a cessé de fonctionner, valant
—1 si l'ordinateur est encore en état de marche.

1. a. Ecrire une requéte SQL permettant de déterminer le nombre total d’ordinateurs pro-
duits par le fabricant.

b. Ecrire une requéte SQL permettant de déterminer le nombre total d’ordinateur ayant
cessé de fonctionner exactement un an apres leur production.

c. Dans cette question uniquement, on suppose que la durée de vie en années d’un
ordinateur est une variable aléatoire de loi géométrique de parametre p inconnu.

Expliquer de quelle maniere le résultat des requétes écrites dans les questions précédentsq
permettent d’estimer le parametre p.

Voir le chapitre consacré a l’estimation.

2. Un attribut durée_ vie, de type INTEGER a été ajouté a la table ordinateur. Aux champs
de l'attribut durée_ vie a été affectée la valeur —1.

Ecrire une requete SQL permettant de modifier la table ordinateur en affectant, pour
chaque ordinateur sa durée de vie a l'attribut durée_ vie. Dans le cas des ordinateurs
encore en état de marche, on ne modifiera pas la valeur —1 déja affectée.

3. Dans cette question, on cherche a déterminer s’il est raisonnable de représenter la durée de
vie d’'un ordinateur par une variable aléatoire de loi géométrique d’un certain parametre
p que l'on cherchera a approcher.

a. Expliquer comment le résultat de la requéte suivante permet d’obtenir une valeur
approchée de p :

SELECT AVG(duree_vie) FROM ordinateurs

b. La base de données compte au total 10 000 ordinateurs. On exécute les commandes
suivantes :

SELECT COUNT (%) /10000 FROM ordinateurs WHERE duree_vie =
SELECT COUNT (%) /10000 FROM ordinateurs WHERE duree_vie

SELECT COUNT(*) /10000 FROM ordinateurs WHERE duree_vie

Expliquer de quelle maniere, les données de la table ordinateurs peuvent étre exploitées
pour déterminer s’il est raisonnable de représenter la durée de vie d’un ordinateur par
une variable aléatoire qui suit la loi géométrique.

On pourra s’aider de la question 8 de l’exercice 1 de ECRICOME 2024 dont cet

exercice est extrait.

w0

CHAPITRE VIII 12

2. LE LANGAGE SQL (ENQUETE SUR LES PANAMA PAPERS)

Cette deuxieme partie du cours est rédigée sous forme d’un TP. Nous allons y découvrir le langage
SQL qui est construit pour dialoguer avec des bases de données relationnelles.

Nous n’entrerons pas (trop) dans les stratégies de création de données. Nous supposerons que la
base de données est déja construite et déja remplie. Ce qui nous intéresse ici c’est d’interroger ces
données.

Avant de commencer, il faudra télécharger un interpréteur de commandes SQL et la base de données
que nous allons utiliser.

1. Le programme a télécharger s’appelle SQLite, il est léger, libre et gratuit, et se trouve ici.

2. La base de données est disponible sur ma page Internet a cette adresse. Elle est écrite dans un
format .sqlite3 (qui est en fait un groupe de fichiers .csv), qui est bien str compatible avec le
logiciel SQLite. Attention, le fichier est gros (environ 80MB).

2.1. Le contexte. En avril 2016, le journal allemand Stiddeutsche Zeitung ainsi que le Consortium
International des Journalistes d’Investigation (ICLJ) publient des documents confidentiels provenant
d’un cabinet d’avocats panaméen.

Cette publication fait grand bruit a travers le monde, car les documents sur lesquels ont enquété
les journalistes du consortium international révelent des informations sur plus de 214 000 sociétés
offshores ainsi que le nom des actionnaires de celles-ci. C’est I'affaire des Panama Papers.

Si laffaire a fait tant de bruit, c’est parce qu’elle dévoile un systéme complexe, massif et secret
permettant a des entreprises ou a des particuliers de cacher de grosses sommes d’argent sur des comptes
bancaires. Ces comptes sont généralement situés dans des pays ou la législation est avantageuse, que
ce soit en termes de secret bancaire, de taxation, ou de controle de la provenance de I’argent. Ce
phénomene est appelé I'évasion fiscale.

Si ces pratiques sont souvent légales, I’opinion publique les voit en général d’un mauvais ceil. En effet,
des sommes d’argents générées au sein d’un Etat donné (les bénéfices d’une entreprise par exemple)
sont taxées par ce méme Etat. Le fruit de cette taxation est redistribué (entre autres) aux services
publics dont bénéficie la population du pays en question.

Cependant, ’évasion fiscale consiste a transférer les bénéfices du pays d’origine vers des pays a
législation avantageuse (appelés les paradis fiscaux). Ainsi, les sommes d’argent générées dans un pays
donné échappent en partie a I'impot, et ne bénéficient donc plus aux populations locales. Dans certains
pays, le montant estimé de 1’évasion fiscale est égal ou supérieur au budget annuel de ’Etat, lorsqu’en
parallele leurs hopitaux peinent & assurer les soins nécessaires (source : ICLJ).

Dans les Panama Papers se trouvaient par exemple les noms de plusieurs responsables politiques a
travers le monde. Certains d’entre eux ont di démissionner suite a la pression de I'opinion publique.
Mais les Panama Papers ont aussi mis en lumiere des moyens de financement de réseaux criminels ou
terroristes.

En France, affaire a été révélée par 2 groupes de journalistes : Premieres Lignes Production (qui
a réalisé ce documentaire), et Le Monde.

2.2. La base de données. Les Panama Papers sont composés de pres de 11,5 millions de documents
(emails, courriers, contrats, etc.), pour un volume d’environ 2 Go. De ces documents écrits, 'ICLJ a
tenté d’extraire les informations essentielles grace a des algorithmes. Le résultat de cette extraction a
été placé dans une base de données rendue publique.

Cette base n’est pas exacte, elle contient par exemple beaucoup de doublons et de champs erronés.

Grossierement, la BDD des Panama Papers contient des sociétés offshores. Celles-ci sont créées pour
des bénéficiaires par des fournisseurs de services offshores. Des intermédiaires se chargent généralement
de faire le lien entre les bénéficiaires et les fournisseurs de services offshores.

Il y a 4 tables principales dans la base de données.

1. La table entity. C’est elle qui contient les sociétés offshores.

2. La table intermediary, qui contient les intermédiaires.

https://louismerlin.fr/Enseignement/En cours/TP/sqliteadmin.zip
https://louismerlin.fr/Enseignement/En cours/TP/database_sqlite3.zip
https://www.sueddeutsche.de/
https://www.icij.org/
https://en.wikipedia.org/wiki/Offshore_company
https://en.wikipedia.org/wiki/Offshore_company
https://fr.wikipedia.org/wiki/Panama_Papers
https://fr.wikipedia.org/wiki/%C3%89vasion_fiscale
https://fr.wikipedia.org/wiki/Paradis_fiscal
https://www.youtube.com/watch?v=F6XnH_OnpO0
https://fr.wikipedia.org/wiki/Panama_Papers#Liste_compl.C3.A8te_des_personnes_morales_et_physiques_concern.C3.A9es
https://www.youtube.com/watch?v=F6XnH_OnpO0
https://www.youtube.com/watch?v=F6XnH_OnpO0
https://www.youtube.com/watch?v=L3ZIO-mBxfE
https://www.lemonde.fr/panama-papers/
https://offshoreleaks.icij.org/

CHAPITRE VIII 13

3. La table address qui contient les adresses de certaines sociétés intermédiaires.
4. La table officer, contenant entre autres les bénéficiaires des sociétés.

Ces tables contiennent les données publiées par 'ICILJ, auxquelles ont été ajoutées quelques données
fictives spécialement pour ce TP, notamment la société Big Data Crunchers Limited. Elle a été créée
de toutes pieces pour servir de fil rouge.

Remarque 2.2.1. Une société peut étre domiciliée dans un pays, mais étre enregistrée dans un autre.
Dans ce cas, cette société répondra a la juridiction dans laquelle elle est enregistrée, méme si son
adresse officielle n’est pas dans cette juridiction.

Souvent, les termes juridiction et pays sont confondus. En général, les lois sont les mémes a I'intérieur
d’un méme pays. Mais parfois, un pays posséde plusieurs juridictions : c¢’est souvent le cas des états
fédéraux, dans lesquels chaque état possede des lois différentes. Par exemple, I’état du Delaware aux
USA est souvent considéré comme un paradis fiscal, car les lois y sont plus avantageuses pour les
sociétés que dans les autres états des USA.

2.3. Objectif du TP. Je vous propose de vous mettre dans la peau d’un enquéteur qui enquéte sur
le financement d’un réseau criminel.

Vous avez au cours de votre enquéte intercepté une facture émise par une mystérieuse société qui
s’appelle Big Data Crunchers Limited. Sur cette facture, 'adresse de cette société n’est pas indiquée.
Vous ne savez pas qui se cache derriere cette société, mais vous pensez qu’elle peut étre une société
écran. Une société écran ne se crée pas si facilement que cela. En général, il faut demander de ’aide
a des services spécialisés. On les appellera ici des intermédiaires.

Vous allez donc enquéter sur cette mystérieuse société, mais aussi sur les intermédiaires qui ont aidé
a la créer, car vous pensez qu’il sera peut-étre possible de les accuser de complicité.

2.4. Un peu de vocabulaire.

En économie, une société est la forme juridique la plus répandue des entreprises ; c’est un terme
souvent utilisé pour désigner une entreprise.

C’est une société ”extraterritoriale” en frangais. En pratique, il s’agit d’une société créée dans
un pays dans lequel le bénéficiaire économique final n’est pas résident et qui est dirigée hors du
pays dans lequel elle est immatriculée. Elles sont souvent utilisées dans des pays ou la fiscalité
est avantageuse. La société offshore est une forme de société écran, qui présente toutes les ca-
ractéristiques d’une société réelle (elle est immatriculée par exemple), mais dont ’apparence ne
correspond pas a la réalité.

Une société écran est une société fictive, créée pour dissimuler les transactions financieres d’une
ou de plusieurs autres sociétés.

Un intermédiaire est dans la plupart des cas une personne ou un cabinet d’avocats agissant
pour des clients recherchant un fournisseur de services offshores ou demandant la création d’une
société offshore.

(en anglais : offshore service provider ou agent) C’est une société qui fournit des services dans
une juridiction offshore, sur demande d’un client. Ces services peuvent étre la création, 1’enre-
gistrement ou la gestion de sociétés offshores.

CHAPITRE VIII 14

en anglais : beneficial owner ou beneficiary) C’est la personne réellement propriétaire de la
société. Dans le monde offshore, I'identité du bénéficiaire est souvent gardée secret.

Remarque 2.4.1. I’ICILJ tient a préciser a toute personne souhaitant utiliser la base de données les
points suivants :

1.

3.

L’utilisation de sociétés offshores et de trusts n’est pas toujours illégale. Les personnes, sociétés
ou autres entités citées dans la base de données n’ont donc pas forcément enfreint la loi ou agi
de maniere illégitime.

Beaucoup de personnes ou entités ont des noms similaires. Avant de conclure que deux noms
correspondent a la méme personne ou entité, il est conseillé de vérifier leurs adresses respectives
ou toute autre information pertinente.

En cas d’erreur dans la base de données, prendre contact avec I'ICLJ.

2.5. Déroulement du TP.

1.

Commencons tout d’abord par créer la table entity qui accueillera les sociétés offshore conte-
nues dans les Panama Papers.

CREATE TABLE entity (
INTEGER,

name TEXT NOT NULL,
jurisdiction TEXT,
jurisdiction_description TEXT,
company_type TEXT,
id_address INTEGER
incorporation_date DATE,
inactivation_date DATE,
status TEXT,
service_provider TEXT,
country_codes TEXT,
countries TEXT,
source TEXT,
PRIMARY KEY(id),
FOREIGN KEY(id_address) REFERENCES address(id)

La commande CREATE TABLE permet de créer une table et de renseigner son nom (sur la
premiere ligne) et les différents attributs. Nous devons spécifier le type de chaque attribut, ici
du texte (chaine de caracteéres), un nombre entier ou une date. D’autres options sont possibles,
comme un nombre réel ou un booléen (un objet qui prend 2 valeurs, VRAI ou FAUX).

Le mot-clé NOT NULL nous empéche de créer une ligne sans renseigner le nom de la société.

Enfin, nous avons indiqué la clé primaires de la table et une clé étrangere en l'attribut
id-address qui fait référence a la colonne id de la table address.

Maintenant que nous avons créé la structure de la table, insérons une ligne

 INSERT INTO entity(, name, jurisdiction,
jurisdiction_description, incorporation_date) VALUES

(0,’Une societe’, ’IMG’, ’Le pays imaginaire’, °’
2023-02-037);

Nous spécifions la table a remplir grace a INSERT INTO, puis nous indiquons entre parenthese
les colonnes que nous voulons compléter, puis nous donnons les valeurs a insérer apres le mot
clé VALUES. Ces valeurs doivent étre dans le méme ordre que le nom des attributs.

Si certaines valeurs sont laissées vides, elles ne contiennent aucune valeur.

CHAPITRE VIII 15

3. Chercher a quoi sert la commande DELETE FROM et supprimer de la table la ligne que nous
venons de créer.

Nous supposons dorénavant que la table entity a été remplie : c’est celle que vous avez téléchargé
dans la base de données.

4. La commande SELECT permet de communiquer avec la base de données. A chaque requéte
avec SELECT, le SGBDD nous renvoie une table. Exécuter la commande

SELECT * FROM entity ;

Le caractere * derriere SELECT signifie que nous voulons obtenir toutes les lignes et toutes
les colonnes disponibles.

Comparer la commande précédente avec

i} SELECT DISTINCT * FROM entity ;

A quoi sert le mot-clé DISTINCT ?

5. Exécuter la commande
i SELECT , name, status FROM entity ;

Que voyez-vous 7 Quelle est la méthode SQL pour obtenir une projection ?

6. Commencons maintenant notre enquéte ! Nous allons chercher cette mystérieuse société dont le
nom est Big Data Crunchers Limited. 11 s’agit donc de fabriquer une restriction de la relation
entity. C’est 'affaire du mot clé WHERE. Exécuter

[
 SELECT * FROM entity WHERE name = ’Big Data Crunchers Ltd.’;

Qu’apprend-on sur la société qu’on cherche ?

Remarque 2.5.1. Pour trouver la société Big Data Crunchers Limited, nous avons utilisé I'opérateur
de comparaison =. D’autres opérateurs de comparaison existent :

e A=PB: Aestégal a B.

e A <> B : A est différent de B.

e A> Bet A< B : A est supérieur/inférieur a B.

e A>= B et A=< B : A est supérieur/inférieur ou égal a B.

A BETWEEN A AND C' : A est compris entre B et C.

A LIKE 'chaine de caractére’ : pour comparer A a une chaine de caractere donnée.
A IN (B1, Bg,---) : A est présent dans la liste (B, Ba, -+).

A IS NULL : A n’a pas de valeur.

7. Les opérateurs logiques OR, AND et NOT signifient respectivement OU, ET et NON. Grace a
ces opérateurs, on peut complexifier un peu nos conditions.

Exécuter

] SELECT * FROM entity
) WHERE (< 10000004 AND (NOT < 10000000)) OR (name = ’Big

Data Crunchers Ltd.’);

et interpréter.

8. Le produit cartésien s’obtient facilement grace a SELECT :

il SELECT * FROM entity, address ;

Attention le temps de calcul est parfois long.

CHAPITRE VIII 16

9. Nous voulons maintenant savoir si Big Data Crunchers Limited a servi d’intermédiaire. Les
intermédiaires peuvent étre soit des personnes physiques, soit des sociétés. Il y a donc peut-étre
des sociétés qui sont a la fois dans la table intermediary et dans entity.

Pour utiliser un opérateur binaire (intersection, union, différence) il faut que les tables aient
le méme schéma, ce qui n’est pas le cas ici.

a. On suppose que deux sociétés qui ont méme nom et méme adresse sont les mémes. Faire
une projection des tables intermediary et dans entity pour ne conserver que les attributs
name et id_address.

b. Pour avoir la liste des sociétés de entity et des intermédiaires, on utilise le mot clé UNION.
Exécuter

SELECT name, id_address FROM entity
UNION

SELECT name, id_address FROM intermediary ;

c. Utiliser le mot clé EXCEPT pour trouver les sociétés qui ne sont pas des intermédiaires.

d. Utiliser enfin le mot clé INTERSECT pour trouver les sociétés qui sont aussi des intermédiaires.
Chercher si Big Data Crunchers Limited en fait partie.

e. (x) Imaginons que deux tables présentent un grand nombre d’attributs et on veut savoir si
une ligne d’une table se trouve aussi dans la deuxieme table, sans avoir a comparer tous
les attributs un par un.

Trouver une commande SQL qui réponde a ce probleme.

10. Nous voulons maintenant trouver ’adresse de la mystérieuse société Big Data Crunchers Limi-
ted.

a. Nous allons déja faire la jointure de la table entity avec la table address Pour cela, il faut
exécuter la commande

FROM entity

JOIN address ON entity.id_address = address.
id_address;

Les tables & joindre sont en effet entity et address (dans cette ordre) et la condition
de jointure apparait apres le mot-clé ON. Si la condition de jointure porte sur un groupe
d’attributs plus grand, on utilise la syntaxe

§ SELECT * FROM t1 JOIN t2 ON (t1.fki = t2.pkl AND ti.
fk2 = t2.pk2);

b. A laide de I'exercice 1.2.8, expliquer pourquoi la commande

] SELECT * FROM entity, address WHERE entity.id_address =

address.id_address ;

a le méme effet que la commande de jointure.

c. Retrouver maintenant ’adresse de la société mystere.

11. Retrouvons maintenant les intermédiaires qui ont participé a la création de la société Big Data
Crunchers Limited.

a. Quel est le role de la table assoc_inter_entity 7

b. Exécuter et interpréter la commande

CHAPITRE VIII 17

SELECT
i. as intermediary_id,

i.name as intermediary_name,

i
e as entity_id,
e.name as entity_name,
e.status as entity_status
FROM
intermediary i,
assoc_inter_entity a,
entity e
WHERE
a.entity = e.
AND a.inter = i.
AND e.name = ’Big Data Crunchers Ltd.’

Le mot-clé as permet de renommer les attributs en quelque chose de plus lisible. De méme,
les lettres a, e et i dans le FROM sont aussi des alias.

c. Conclure sur les intermédiaires qui ont servi a la création de Big Data Crunchers Limited.

12. Nous voulons maintenant incriminer les sociétés qui ont bénéficié des services des deux in-
termédiaires que nous avons trouvés, dans chacune des juridictions. Nous devons donc faire des
agrégations.

a. Exécuter la commande

] SELECT status, count(*) FROM entity GROUP BY status ;

Ici nous avons placé lattribut de partitionnement status derriere le mot-clé GROUP BY et
la fonction d’agrégation count() dans le SELECT. Que renvoie cette commande ?

b. Exécuter et interpréter

| SELECT (incorporation_date) AS maxi FROM entity;

La fonction max est une autre fonction d’agrégation.

c. Comparer les requétes

]l SELECT status, count(*) FROM entity GROUP BY status ;
\

et

SELECT count (*) FROM entity GROUP BY status ;

Quel est 'intérét de la premiere option 7
d. Exécuter et interpréter la commande
 SELECT

2 i. as intermediary_id,
3 i.name as intermediary_name,
4 e.jurisdiction,
5 count (%)
] FROM
intermediary 1i,

8 assoc_inter_entity a,

9 entity e

] WHERE

11 a.entity = e.

12 AND a.inter = i.

13 AND (i. = 5000 OR 1i. = 5001)
4 GROUP BY

15 i. , i1.name, e.jurisdiction;

13. Enfin, il est parfois utile de savoir réorganiser les lignes d’une table selon le critere que 'on
choisit. On utilise pour ¢a le mot clé ORDER BY comme dans la commande

CHAPITRE VIII 18

@ SELECT * FROM entity ORDER BY lifetime ;
a. Que constatez-vous lorsqu’on exécute

 SELECT * FROM entity ORDER BY lifetime DESC;

b. Enfin, exécuter la commande

§ SELECT
i. AS intermediary_id,
i.name AS intermediary_name,

e.jurisdiction,
e. jurisdiction_description,
count (*¥) as cnt
FROM
intermediary 1i,
assoc_inter_entity a,
entity e
WHERE
a.entity = e. AND
a.inter = 1i. AND
(i. = 5000 OR i. = 5001)
GROUP BY
i. , i1.name, e.jurisdiction, e.
jurisdiction_description
ORDER BY
cnt DESC ;

Qu’en déduisez-vous ?

2.6. Conclusion : les commandes a retenir.
e La commande CREATE TABLE.

e Les mots clés PRIMARY KEY et FOREIGN KEY avec la méthode pour pointer vers une clé
candidate d’une autre table.

e Les stratégies de projection restriction et produit cartésien avec SELECT.

e Pour la restriction, les opérateurs de comparaison.

e Les opérateurs logiques OR, AND et NOT.

e Le mot clé DISTINCT.

e Les opérations binaires sur les tables données par les mots clé UNION, INTERSECT, EXCEPT.
e La méthode de jointure.

e Le mot-clé GROUP BY pour faire un agrégat.

e Les fonctions d’agrégation count(*), min, max, avg, sum (compter, minimum, maximum, moyenne
et somme).

e Le mot-clé ORDER BY.

3. SUJETS D’ANNALES EN LIEN AVEC CE CHAPITRE.

Ce chapitre est une nouveauté du programme 2022. A une seule exception pres, aucun sujet n’a
pour le moment incorporé le matériel que nous venons de voir ici. Difficile de savoir & quoi s’attendre
donc.

1. ECRICOME
e 2024 Exercice 1 Partie 4.
2. EDHEC

3. EML

4. HEC/ESSEC

CHAPITRE VIII

19

	1. Bases de données (aspects théoriques)
	1.1. Table de relations
	1.1.1. Les clés
	1.1.2. Les tables d'association

	1.2. Algèbre relationnelle
	1.2.1. Projection et Restriction
	1.2.2. Union, Différence, Intersection
	1.2.3. Produit cartésien
	1.2.4. Jointure
	1.2.5. Agrégation

	2. Le langage SQL (enquête sur les Panama Papers)
	2.1. Le contexte
	2.2. La base de données
	2.3. Objectif du TP
	2.4. Un peu de vocabulaire
	2.5. Déroulement du TP
	2.6. Conclusion : les commandes à retenir

	3. Sujets d'annales en lien avec ce chapitre.

